Some Transformations Having a Unique Measure with Maximal Entropy

نویسنده

  • PETER WALTERS
چکیده

1. Introduction Let X be a compact metric space and T: X-> X a homeomorphism of X onto X. Let M(T) denote the collection of all T-invariant Borel probability measures on X. By Krylov and Bogolioubov's work we know M(T) is non-empty (see [10]). M{T) is a convex set and closed in the weak topology. For /x e M(T), h(T, p) will denote the measure-theoretic entropy of T with respect to p. Ifh top (T) denotes the topological entropy of T ([1]) then h t0V (T) = sup h(T,p) ([5]). Gurevic has given

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measures of maximal entropy

We extend the results of Walters on the uniqueness of invariant measures with maximal entropy on compact groups to an arbitrary locally compact group. We show that the maximal entropy is attained at the left Haar measure and the measure of maximal entropy is unique.

متن کامل

Entropy of infinite systems and transformations

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...

متن کامل

Observational Modeling of the Kolmogorov-Sinai Entropy

In this paper, Kolmogorov-Sinai entropy is studied using mathematical modeling of an observer $ Theta $. The relative entropy of a sub-$ sigma_Theta $-algebra having finite atoms is defined and then   the ergodic properties of relative  semi-dynamical systems are investigated.  Also,  a relative version of Kolmogorov-Sinai theorem  is given. Finally, it is proved  that the relative entropy of a...

متن کامل

ar X iv : 0 70 5 . 21 48 v 1 [ m at h . D S ] 1 5 M ay 2 00 7 PREDICTABILITY , ENTROPY AND INFORMATION OF INFINITE TRANSFORMATIONS

We show that a certain type of conservative, ergodic, measure preserving transformation always has a maximal zero entropy factor, generated by predictable sets. We also consider distribution asymptotics of information; e.g. for Boole’s transformation, information is asymptotically mod-normal, a property shared by certain ergodic, probability preserving transformations with zero entropy. §0 Intr...

متن کامل

Predictability, Entropy and Information of Infinite Transformations

We show that a certain type of conservative, ergodic, measure preserving transformation always has a maximal zero entropy factor, generated by predictable sets. We also consider distribution asymptotics of information; e.g. for Boole’s transformation, information is asymptotically mod-normal, a property shared by certain ergodic, probability preserving transformations with zero entropy. §0 Intr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1973